
5.4. Some Approximate models 
To obtain a specific values of E and ψ, one needs to 
solve Schrodinger equation for the actual potential 
V(r) in the solid of interest. But since this is a very 
tough task, it is preferable to solve Schrodinger 
equation using some simplified potentials.  
 
Empty-lattice model: 
* In this simplest case the crystal potential is 
assumed to be exactly zero ;V(r)=0. 
i.e. the electron is completely free.  
* For 1D; the state functions and energies are: 
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where L =Na is the length a long x axis and the 
superscript 0 indicates that these solutions obtained 
at V(x)=0. 
 
* According to eq. (7) the dispersion curve of 
electrons has the familiar parabolic shape shown in 
Fig.a . 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The periodic-zone scheme 

The extended-zone 
scheme 

The reduced-zone scheme 

 
Nearly-free-electron model (NFE): 
* In this model the crystal potential is assumed to be 
so weak ; i.e. the electron is nearly free.  
* This model can serve as a rough approximation to 
the valence bands in the simple metals such as: Na, K, 
Al, etc. 
* On the basis of perturbation method one finds that 
the crystal potential will only affect the regions near 
the zone boundaries.  This effect is to smooth over 
the sharp corners, and hence, to create energy gaps 
at these regions with values of, 
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where V-2π/a is the Fourier component of the 
potential, that is, 
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* Physically, energy gaps can be explained according 
to Bragg reflection of electron waves in crystal: 
1- When Bragg condition                    is satisfied at 
the zone boundaries, a wave traveling to  the right is 
Bragg reflected to the left forming a standing wave.  

ak /nπ±=

2- Two different standing waves ψ(+) & ψ(-) will be 
formed from the two traveling waves eikr & e-ikr . 
3- Each of these standing wave will pile up electrons 
at two different directions for the same K, and this 
the origin of the energy gap. 
 



tight-binding model (TB): 
* In this model the crystal potential is assumed to be 
strong so that the electron is captured by ions for 
some intervals. During each interval the electron 
orbits around a single ion, i.e. its state function is 
that of an atomic orbital. 
* This model can serve as a rough approximation to 
the narrow, inner bands in solids.  
 
 
 
 
 
 

 
 
 
 
 

5.5. Metals, Insulators &Semiconductors 
* The fact that used to distinguish between these 
types of solids is: 
 
A band which is completely full carries no electric 
current, even in the presence of an electric field. 
  
 



 
 
 
 
 
 
 
 
 
 
 
* If the gap between the valance band and the band 
immediately above it is small, electrons may be 
thermally excited across the gap and the solid is 
called a semiconductor. 
* At room temperature a substance behaves as a 
semiconductor if Eg is less than 2eV. 
* In insulators   Eg ~ 7eV. 
 
 
 
 
 
 
 
 



5.6. Electron Density of states 
 
Let g(E) defines the electron density of states, i.e. 
 
g(E) dE = number of electron states per unit volume 
in the energy range (E - E+dE ).  
 
For regions near the zone center: 

- Dispersion relation is given by; 
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- The corresponding energy contours in k-space are 

spheres surrounding the origin. 
 
- Volume of shell confined between E &E+dE is:                    
                      4πk2dk 
 
Hence: 
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Or, 
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Taking into account the spin degeneracy leads to 
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Note: 
 

* The larger the energy the greater the radius, and 
hence the larger the number of states. 

 

* The greater the mass the larger the number of 
states. 

  

For regions near the zone boundaries: 

- Dispersion relation given by (7) is not valid. 
-  As a result the density of states will has a more 

complicated formula. The following Fig. shows  how 
g(E) will vary with E near the zone boundaries.  

 
 
 
 
 

 
 

 



5.7 The Fermi Surface 
 
Recall: FS is the surface in k-space inside which all 
states are occupied by valence electrons. 
Or: FS is the surface in k-space below which all 
states are occupied and all states above it are 
empty. 
 
* We will determine the Fermi energy EF in the 
regions where the relation (7) is applicable. 
From definition; 
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5.8 Velocity of The Bloch Electron 
 
Consider an electron in a state ψk, the velocity by 
which it moves through the crystal should be related 
to the energy of the state according to; 
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Note: 
 
The velocity v is constant unless the periodicity of 
the lattice is changed. 

 
 
 
 
 
 
 
 
 
 
 
 
 



5.9 The Effective Mass 
 
When an electric field ε is applied to a crystal, the 
Bloch electron will undergo an acceleration a where; 
 
                                                                (12) 
 
The electric force F that caused this acceleration is 
given by, 
                                                                (13)          
 
 Substituting from (11) & (13) into (12) leads to; 
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Eq. (14) has the same form as Newton’s second law, 
hence one can define the electron effective mass 
as,  
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Note: 

1- When the curvature is large the mass is 
small, and the small curvature indicates a large 
mass.  
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2- The effective mass m* could be (+ve) or (-
ve). Near the bottom of the band, the electron 
accelerates and m* is positive. But as the 
electron approaches the top of the band it will 
decelerate, and hence m* is negative. 

3- the effective mass m* is related to the free 
electron mass me by the following relation: 
 
 
 

 
 
 
 
 
 
 

5.10 The Electrical conductivity 
* Recall: In the free electron model the electrical 
conductivity is given by; 
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* Within the framework of band theory, a 
corresponding  formula can be obtained as following: 
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- When an external electric field is applied, FS will 
be shifted a distance δk on the k-space. For 1D; 
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- The current density can be then written as; 
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But  
                                                                        (19) 
 
Substituting from (17) & (19) into (18), we get 
 
 
 
If FS is a sphere,                , hence;  
 
 
Therefore σ is; 
 
                                                                  (20)  
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In (20) the predominant factor in determining σ is 
the density of state at FS, and not the electron 
density n as (16) states.  
In fact (16) is an special case of (20), results when 
Fermi energy is taken as (10). 
 
 
 
 
 
 
 

 
5.11 The Hall Effect 

 
Define: a hole as one vacant state occurs in a totally 
full band.  
 
 
 
 
 
 
 
 
 
 



 
* When two bands overlap with each other, electrons 
will exist in the upper band and holes in lower.  
* The Hall constant expression for a metal contains 
both electrons and holes is; 
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where Rh is the hole Hall constant given by, 
 
                                                                         (22) 
 
  
The total Hall constant R may be (-ve) or (+ve) 
depending on whether the contribution of the 
electrons or the holes dominates.  
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Intrinsic Semiconductors 
 
Intrinsic Semiconductors : 

- The substance is pure, and hence the carrier 
concentration is an intrinsic property. 

- The substance conducts current by both 
carriers electrons and holes. 

- The concentration of electrons and the 
concentration of holes are equal ~ 1015/cm3.  
 
                                                                       (1) 
 
Or, 
 
                                                                       (2) 
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- The Fermi level lies at the middle of the energy 
gap, i.e.  
                                     EF ~ 1/2 Eg                                         (3) 
 
 
 
 
 
 
 



 
Extrinsic Semiconductors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ga 



Extrinsic Semiconductors : 
- The substance contains a large number of 

impurities which supply most of the carriers. 
Hence the carrier concentration is an extrinsic 
property. 

- The substance conducts current only by one type 
of carriers: electrons or holes. 

- The carrier concentration is about ~ 1015/cm3. 
But by heavy doping one can get sample with 
concentration of 1018/cm3.  

- When a tetravalent sample (Si) is doped by a 
pentavalent atoms (As), each impurity atom will 
contribute an electron to the CB.  Because of that 
these impurities are called  donors  and the 
substance is known as n-type Semiconductor . 
 

- When a tetravalent sample (Si) is doped by a 
trivalent atoms (Ga), each impurity atom will 
contribute a  hole to the VB.  Because of that 
these impurities are called  acceptors  and the 
substance is known as p-type Semiconductor . 
   
 
 

 



Semiconductors Statistics 
To find the carrier concentration in a semiconductor 
contain both donors and acceptors, it is easily to 
divide the substance into two regions:  
Intrinsic region : 

- The concentration of electrons equals to the 
concentration of holes equals to what called the 
intrinsic concentration ni ; 
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- This region obtains when the impurity doping is 
so small, i.e.  
 
                                                                     (5) 
 
where Nd, Na are the concentration of donors and 
acceptors respectively.  
 

- Since                     all semiconductors become 
intrinsic at high temperatures .  
 
                                                                        
 
 
 

kTE
i

gen 2/∝ −

N )( Nn adi −〉〉



Extrinsic region : 
- Using the common doping rate ~ 1015/cm3 ,the 

condition (4) is not satisfied, and the number of 
carriers supplied by impurities at 300K is large 
enough to change the intrinsic concentration ni.  

-  In this case : 
                                                                          (6) 
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- When Nd >> Na (n-type Semiconductor ); 
 
 
And                                                                      (7) 
 
 

- When Na >> Nd (p-type Semiconductor ); 
 
 
and                                                                      (8) 
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Electrical Conductivity and Mobility 
 
* Assume an n-type semiconductor, using the free 
electron model the electrical conductivity is given 
by; 
 
                                                                    (9)                      
 
* In semiconductors, transport characteristic is 
often described by mobility, the ratio between the   
electron velocity and the applied field μ=vd/ε 
 
 
                                                                    (10) 
 
One can express the electrical conductivity in terms 
of mobility as; 
                                                                     (11) 
 
A typical value may be obtained  by substituting  
 
 
 
 
* Total conductivity in a sample contains both 
carriers is  
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Temperature dependence of Conductivity: 
1- A semiconductor in the intrinsic region: 
 Its conductivity is expressed by (12). But in this 
situation the concentration n increases exponentially 
with temperature, thus; 
                                                          (13)            
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where f(T) is a function which depends only weakly 
on the temperature (The function depends on the 
mobilities and effective masses of the particles.)  
If one takes the logarithms 
of both sides of the equation,  
he will get; 
 
 
A plot of log σ versus l/T  
should give a straight line  
with a slope of ( - Eg/2k)  
that determines the energy 
gap of the material.  
 
2- A semiconductor in the extrinsic region: 
In that case the temperature dependence of σ on T 
is not usually as strong as indicated above. Suppose 
that the substance is extrinsic n-type. The 
conductivity is 
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But the electron concentration n is now a constant 
equal to Nd, the donor concentration. And any 
temperature dependence present must be due to the 
mobility of electrons . 

 
 

Temperature dependence of Mobility: 
 
 
 
 
 
 
 
 
 
 
 
 

Hall Effect in Semiconductors 
* The Hall constant expression for a semiconductor 
contains both electrons and holes is; 
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The total Hall constant R may be (-ve) or (+ve) 
depending on whether the contribution of the 
electrons or the holes dominates. It may vanish in 
semiconductors that reflect a high degree of 
symmetry.  
 
 

Direct and Indirect-Gap Semiconductors  
 



The Fundamental Absorption: 

In fundamental absorption, an electron absorbs a photon 
(from the incident beam), and jumps from the valence 
into the conduction band. The photon energy must be 
equal to the energy gap, or larger. Therefore, the 
frequency must be  

υ  (E≥ g/h) 
The frequency υο = Eg/h is referred to as the absorption 
edge. 
In the photon absorption process , the total energy and 
momentum of the electron-photon system must be 
conserved. Therefore 
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However, since the wave vector of the photon q is 
negligibly small. Thus, the momentum condition reduces 
to 

if kk =  
 
This selection rule means that only vertical transitions in 
k-space are allowed between the valence and conduction 
bands. 



For Direct-Gap Semiconductors:  
the absorption coefficient  has the form  
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where A is a constant involving the properties of the 
bands.  
A useful application of these 
results is their use in measuring 
energy gaps in semiconductors. 
Thus Eg is directly related to 
the frequency edge, Eg = hυ0 . 
This is now the standard 
procedure for determining the 
gap, because of its accuracy 
and convenience.  
Since the energy gaps in semiconductors are small (1 eV 
or less) the fundamental edge usually occurs in the 
infrared region.  
 
For Indirect-Gap Semiconductors:  
In this case, the electron cannot make a direct 
transition from the top of the valence band to the 
bottom of the conduction band because this would 
violate the momentum selection rule. 



 Such a transition may still take 
place, but as a two-step process. 
The electron absorbs both a 
photon and a phonon 
simultaneously. The photon 
supplies the needed energy, 
while the phonon supplies the required momentum. 
 
The absorption coefficient  in this case has the form  
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where A'(T) is a constant depends on temperature due 
to the phonon contribution to the process.  
Note that αi increases as the second power of (hv - Eg), 
much faster than the half-power of this energy 
difference, as in the direct transition. So we may use 
the optical method to discriminate between direct- and 
indirect-gap semiconductors.  



The Gunn Effect 
Hot electrons: 
At high electric fields electrons gain more energy and, 
their temperature Te may be higher than the lattice 
temperature TL , i.e.  the electrons become “hot”. 
 
Gunn effect: 
Deviation of the linear relation between ε ana J at high 
electric fields to an oscillatory one known as Gunn 
effect.  
 
 
 
 
 
* to explain this  we have to consider the band 
structure of the semiconductors that show such 
phenomena. eg. GaAs: 
 
ΔE=0.36eV 
 

 
 
 



* Under normal situations, all electrons move to the 
central valley, and  

 J

 
* When a strong electric field is applied, electrons will 
be “hot” , and start to populate the secondary valley, 
hence,  

 
 
* Since the effective mass of valley 2 is much larger 
than that of  valley 1 (m2 =5 m1), the mobility in valley 
2 is very small (μ2 = μ1 /50 ). Because of this small 
mobility of the secondary valley, the increase in J2 is 
much smaller than the sharp decrease in J1. And as a 
result the total current actually decreases. 
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10. Superconductivity 
• A superconductor: is a material that has zero 

electrical resistance when cooled below a 
particular transition temperature known as the 
critical temperature (Tc).  

 

• This zero resistivity (or infinite conductivity) is 
called Superconductivity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Main characteristics:  

     1- Zero resistance: Under patrticular values of the 
magnetic field ( B ) and the current density (Jc c) , the 
superconductor material show a zero resistance.  
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2- Meissner effect : superconductors expel   magnetic 
flux such that B = 0 inside.  
 
 
 
 
 
 
 
 
 
Important Notes: 
1- Good conductors at RT do not superconduct at low 
temp. 
2- Tc of two different isotopes are found to be 
proportional to M-1/2. where M is the atomic mass. 
 
 
 



What are Cooper pairs? 
Below Tc electrons form pairs mediated by phonons 
known as Cooper pairs.  
 
 
 
 
 
 
BCS theory: 

Pairs of electrons can behave very differently from single 
electrons which are fermions and must obey the Pauli 
exclusion principle. The pairs of electrons act more like 
bosons which can condense into the same energy level. The 
electron pairs have a slightly lower energy and leave an energy 
gap above them on the order of .001 eV which inhibits the 
kind of collisions which lead to ordinary resistivity. 
For temperatures such that the thermal energy is less than 
the band gap, the material shows zero resistivity.  
Bardeen, Cooper, and Schrieffer received the Nobel Prize in 
1972 for the development of the theory of superconductivity.  
 
Simple picture:

•  when two electrons pass near an ion, both are 
attracted to the ion, leading to an effective 
attraction between the electrons.  

• Above Tc, Cooper pairs are easily destroyed  
by thermal energy of the electrons , but below Tc, 
Cooper pairs are stable. 



1995• Zero resistance arise because Cooper 
pairs cannot be scattered by the 
normal scattering mechanisms in a 
metal. 

High T superconductors:  c 

• Typical value of Tc ~ mK – several K.   

• New class of superconductors 
discovered in 1986,  which have 
considerable higher Tc ~ 30 – 138K.  

 
 

Applications 
* Transmission cables that carry current 
without energy losses will increase the 
capacity of the transmission system, saving 
money, space, and energy.  
* Motors and Generators made with superconducting 
wires will be smaller and more efficient  
* Magnetic resonance imaging (MRI) machines 
enhance medical diagnostics by imaging internal organs. 
MRIs, which currently are made with low-temperature 
superconductors, will be smaller and less expensive 
when made with HTS.  
* Maglev trains seem to 
float on air as a result of 
using superconducting 
magnets. The newest 
prototype may exceed 547 
Km/hr.  



Superconducting magnets 
 

The simplest, and perhaps most clear, application is to 
use the supercurrent to generate an intense magnetic 
field.  

 Let us first consider an electromagnet made from a 
normal metal wire. The magnetic field produced by a long 
solenoid is given by  

B= μ0 n I 
where n is the number of turns per unit length and I is 
the current in the wire. 
 

 For example, the maximum current density for copper 
is 400 A cm-2. Thus, an electromagnet formed by winding 
150 turns per meter using copper wire of diameter 3 mm 
will give maximum current equals to: 
 
Imax= Jmax π r2= (400×104 A m-2)(3.14)(1.5×l0-3 m)2 =  28.3 A 
 
Such current will produce maximum field of; 

BBmax = = μ0 n Imax=  5.34×10  T -3

This is too small for most practical applications. 
However, by placing an iron core within the solenoid, 
this magnetic field can be enhanced to about 2T. The 



main disadvantage of this arrangement is that the iron 
core is extremely heavy and uncomfortable. 
Let us now consider a similar structure using a 
superconducting wire.  

 In this case the maximum current is determined by 
the critical current density. Since it is common to 
achieve critical current densities of 107 A cm-2, it is 
possible to produce very large magnetic fields (of few 
hundred tesla) with a superconducting solenoid. 
 

 An additional advantage is that no iron core is 
required in this case. This dramatically reduces the size 
and weight of the electromagnet and so opens up a whole 
new range of applications which cannot be performed 
using large and heavy conventional electromagnets. 
 
SQUID magnetometers: 
SQUID is an acronym for (Superconducting QUantum 
Interference Device) magnetometer which is capable of 
measuring extremely small magnetic fields. It has 
already found applications in such various areas as 
medicine (measuring the small magnetic fields produced 
by activity in the brain), geology (detecting changes in 
the Earth's magnetic field due to the presence of oil or 
other mineral deposits) and particle physics (searching 
for quarks and other exotic particles).  
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